marcinkiewicz-type strong law of large numbers for double arrays of negatively dependent random variables

نویسندگان
چکیده

in the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. let be a double sequence of pairwise negatively dependent random variables. if for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). in addition, it also converges to 0 in . the results can be generalized to an r-dimensional array of random variables under condition , thus, extending choi and sung’s result [7] of one dimensional case for negatively dependent random variables.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

Marcinkiewicz-type Strong Law of Large Numbers for Double Arrays of Pairwise Independent Random Variables

Let { Xij } be a double sequence of pairwise independent random variables. If P {|Xmn| ≥ t}≤ P{|X| ≥ t} for all nonnegative real numbers t and E|X|p( log+ |X|)3 <∞, for 1 <p < 2, then we prove that ∑m i=1 ∑n j=1 ( Xij−EXij ) (mn)1/p → 0 a.s. as m∨n →∞. (0.1) Under the weak condition of E|X|p log+ |X| <∞, it converges to 0 in L1. And the results can be generalized to an r -dimensional array of r...

متن کامل

the strong law of large numbers for pairwise negatively dependent random variables

in this paper, strong laws of large numbers (slln) are obtained for the sums ƒ°=nii x1, undercertain conditions, where {x ,n . 1} n is a sequence of pairwise negatively dependent random variables.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

On Strong Law of Large Numbers for Dependent Random Variables

Throughout this paper, let denote the set of nonnegative integer, let {X,Xn, n ∈ } be a sequence of random variables defined on probability space Ω,F, P , and put Sn ∑n k 1 Xk. The symbol C will denote a generic constant 0 < C < ∞ which is not necessarily the same one in each appearance. In 1 , Jajte studied a large class of summability method as follows: a sequence {Xn, n ≥ 1} is summable to X...

متن کامل

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of sciences islamic republic of iran

جلد ۱۳، شماره ۳، صفحات ۰-۰

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023